Improved DBSCALE Algorithm by using Ant Colony Optimization
نویسندگان
چکیده
The DBSCALE [1] algorithm is a popular algorithm in Data Mining field as it has the ability to mine the noiseless arbitrary shape Clusters in an elegant way. Such metaheuristic algorithms include Ant Colony Optimization Algorithms, Particle Swarm Optimizations and Genetic Algorithm has received increasing attention in recent years. Ant Colony Optimization (ACO) is a technique that was introduced in the early 1990’s and it is inspired by the foraging behavior of ant colonies. This paper presents an application aiming to cluster a dataset with ACO-based optimization algorithm and to increase the working performance of colony optimization algorithm used for solving data-clustering problem, proposed two new techniques and shows the increase on the performance with the addition of these techniques [5]. We bring out a new clustering initialization algorithm which is scale-invariant to the scale factor. Instead of using the scale factor while the cluster initialization, in this research we determine the number and position of clusters according to the changes of cluster density with the division an agglomeration processes. Experimental results indicate that the proposed DBSCALE has a lower execution time than DBSCAN, and IDBSCAN clustering algorithms. IDBSCALE-ACO has a maximum deviation in clustering correctness rate. This algorithm is proposed to solve combinatorial optimization problem by using Ant Colony algorithm.
منابع مشابه
Optimal Distributed Generation (DG) Allocation in Distribution Networks using an Improved Ant Colony Optimization (ACO) Algorithm
Abstract: The development of distributed generation (DGs) units in recent years have created challenges in the operation of power grids, especially distribution networks. One of these issues is the optimal allocation (location and capacity) of these units in distribution networks. In this thesis, a method based on the improved ant colony optimization algorithm is presented to solve the problem ...
متن کاملHybrid Improved Dolphin Echolocation and Ant Colony Optimization for Optimal Discrete Sizing of Truss Structures
This paper presents a robust hybrid improved dolphin echolocation and ant colony optimization algorithm (IDEACO) for optimization of truss structures with discrete sizing variables. The dolphin echolocation (DE) is inspired by the navigation and hunting behavior of dolphins. An improved version of dolphin echolocation (IDE), as the main engine, is proposed and uses the positive attributes of an...
متن کاملMulti-objective Reconfiguration of Distribution Network Using a Heuristic Modified Ant Colony Optimization Algorithm
In this paper, a multi-objective reconfiguration problem has been solved simultaneously by a modified ant colony optimization algorithm. Two objective functions, real power loss and energy not supplied index (ENS), were utilized. Multi-objective modified ant colony optimization algorithm has been generated by adding non-dominated sorting technique and changing the pheromone updating rule of ori...
متن کاملOptimization of the total annual cost in a shell and tube heat exchanger by Ant colony optimization technique
This paper examines the total annual cost from economic view heat exchangers based on ant colony optimization algorithm and compared the using optimization algorithm in the design of economic optimization of shell and tube heat exchangers. A shell and tube heat exchanger optimization design approach is expanded based on the total annual cost measured that divided to area of surface and power co...
متن کاملNew Ant Colony Algorithm Method based on Mutation for FPGA Placement Problem
Many real world problems can be modelled as an optimization problem. Evolutionary algorithms are used to solve these problems. Ant colony algorithm is a class of evolutionary algorithms that have been inspired of some specific ants looking for food in the nature. These ants leave trail pheromone on the ground to mark good ways that can be followed by other members of the group. Ant colony optim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014